

MCLAREN A150

Integrated Amplifier

MCLAREN A150 Integrated Amplifier

The McLaren A150 represents a unique synthesis of art, science and technology — the realisation of a design philosophy dedicated simply to the accurate reproduction of music. Form, function and performance specifications all express and testify to this basic ideal. But most important is its ability to recreate a true musical experience.

FEATURES

- Phono gain and loading switching for MC or MM.
- Two-stage RIAA equalisation — passive high frequency, followed by active low frequency equalisation.
- Five high level inputs — CD, Tuner, Aux., Tape 1 & 2 (all direct to the power amplifier section).
- Input/Record switching for recording from any input, while listening independently to any other.
- Muting relay to avoid on/off switching transients.
- Headphone socket.
- Two sets of speakers outputs — one muted when headphone plug is inserted.
- Power amplifier stages employ a new, fully symmetrical, complementary design operating in a special quasi-class A mode with very low negative feedback.
- Power MOSFET output stages optimised and critically damped for fast and accurate transient response, while unconditionally stable into any load.
- Massive toroidal power transformer — individual regulated power supplies for all low level stages of each channel.
- Highest quality components and materials including:
 - gain-selected semiconductors
 - polypropylene/polystyrene capacitors
 - metal film resistors
- Star grounding system.

- conductive film potentiometers
- gold plated input sockets

SPECIFICATIONS

Continuous Power Output (both channels driven)	75W RMS per channel into 8 ohms 90W RMS per channel into 4 ohms
Dynamic Power (IHF) (both channels driven)	100W per channel into 8 ohms 110W per channel into 4 ohms
Power Bandwidth	20 Hz - 50 kHz
Harmonic Distortion	Less than 0.1% THD up to rated output at 1 kHz, 0.01% at 50Hz, 0.5% at 10kHz
Frequency Response: Phono (RIAA)	+0.15dB 50Hz - 20kHz (-1dB at 20Hz)
High Level	+0, -1dB 20Hz - 30kHz (-3dB at 10Hz and 50kHz)
Rise Time	5μS at rated power
Channel Separation	70dB at 1kHz, 50dB 20Hz - 20kHz
Noise (A-Wtd/Unwtd)	Phono MC (ref. 0.5mV) 75dB/70dB MM (ref. 5mV) 83dB/74dB High Level (ref. 500mV) 96dB/86dB
Input Sensitivities (for rated output at 1kHz)	
Phono MC	160μV
MM	2.7mV
High Level	210mV
Input Impedances: Phono	47 k or 100 ohms
High Level	50 k ohms
Input Overload Levels (at 1 kHz):	
Phono MC	7mV (+33dB)
MM	120mV (+33dB)
High Level	Infinite
Phase	Noninverting throughout
Power Requirements	110-120/220-240 VAC, 50-60Hz, 300VA max.
Dimensions (mm/inches)	420/16.5(W), 105/4.1(H), 305/12.0(D)
Weight (kg/lb)	8.0/17.6

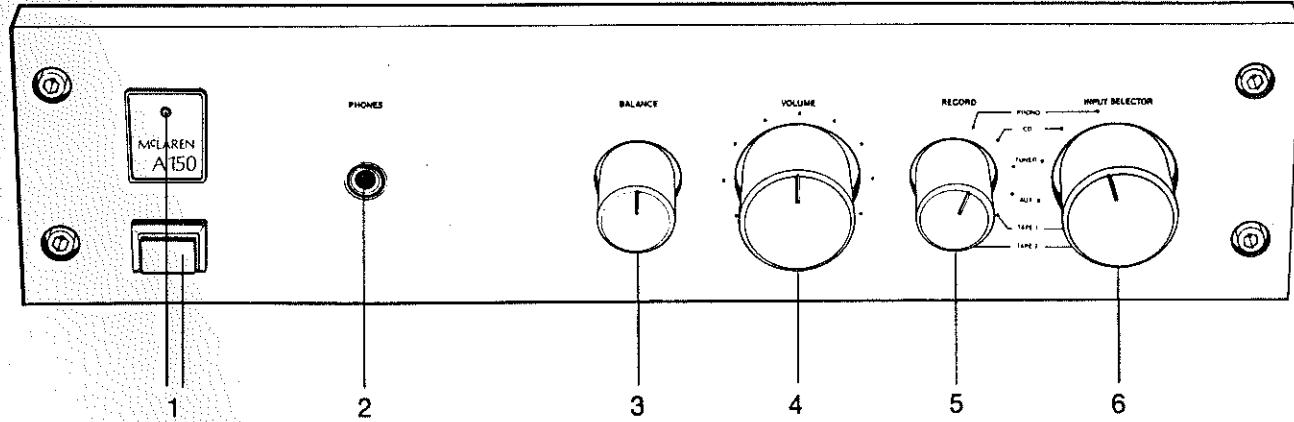
MCLAREN AUDIO

A division of **Zetka Industries Limited**, PO Box 30-406, Lower Hutt, New Zealand. Telephone (04) 683-903. Telex NZ 31668 ZETKA

Contents

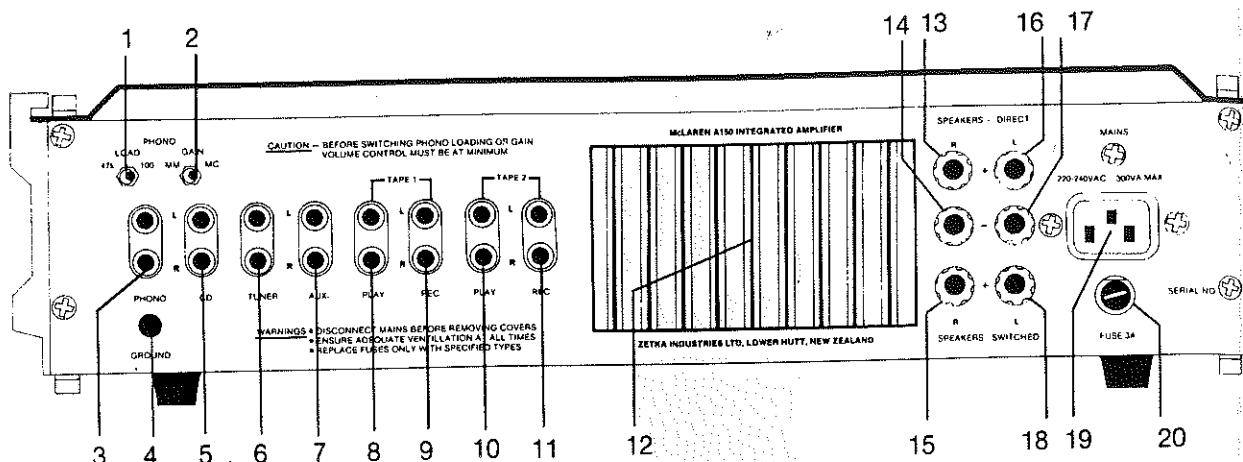
Introduction	Pg 1
Operating Instructions	Pg 3
Control Description	Pg 5
Mechanical Description	Pg 6
Electrical Description	Pg 7
Functional Check Procedure	Pg 9
Parts List	Pg21
Circuit Diagrams	Pg24
P.C. Board Overlay	Pg30

Introduction


The McLaren A150 is a true audiophile integrated amplifier, with input facilities for moving coil or moving magnet phono cartridges, as well as five high level sources including two tape inputs and a dedicated CD input.

The phono input provides 78 db(MM) or 103 dB (MC) of gain (from input to speaker output of the amplifier) at 1kHz. The phono stage is split into two active gain blocks, the first an input buffer stage with a flat frequency response and switchable gain. The second stage incorporates the RIAA equalization and additional gain.

The high level inputs have 42 dB of gain (max) with a flat frequency response. Volume and balance controls are also provided in this stage.


Two tape record outputs are also provided. Record signal is selected by a second 6-position rotary switch completely independent of the input selector. This switching is done at high level no amplification is provided between Tuner, CD, Aux or Tape inputs, and record output.

Control Diagram A150

- 1 Power switch and On indicator
- 2 Head phone socket
- 3 Balance control
- 4 Volume control
- 5 Record selector
- 6 Input selector

Input Output Diagram A150

- 1 Phono loading switch
- 2 Phono gain switch
- 3 Phono input sockets
- 4 Turntable earth nut
- 5 Compact Disc input
- 6 Tuner input
- 7 Auxiliary input
- 8 Tape 1 - Play input
- 9 Tape 1 - Record output
- 10 Tape 2 - Play input
- 11 Tape 2 - Record input

- 12 Amplifier heatsink
- 13 Direct + speaker output right channel
- 14 Direct/Indirect - speaker output right channel
- 15 Indirect + speaker output right channel
- 16 Direct + speaker output left channel
- 17 Direct/Indirect - speaker output left channel
- 18 Indirect + speaker output left channel
- 19 Mains appliance connector socket
- 20 Mains fuse

OPERATING INSTRUCTIONS.

1. Phono
2. Line Level
3. Tape Record Output

1. Phono operationGain-MC/MM

NOTE The McLaren A150 is normally shipped set for moving magnet (MM) operation.

Changing the gain of the A150 is simply a matter of operating the gain switch located on the extreme right of the back panel as viewed from the front.

WARNING: Ensure that the volume control is set at minimum before changing the loading to avoid switching transients which may damage speakers.

Cartridge Loading

The A150 is provided with two loading options, one for moving magnet cartridges and one for moving coils. The correct load for most moving magnet cartridges (and some moving coils) is 47kohms. For moving coil cartridges a suitable load is 100 ohms. This is set by the switch located next to the gain switch.

WARNING: Ensure that the volume control is set to minimum before changing the loading to avoid switching transients which may damage speakers.

Once the phono gain and loading are correct proceed as follows...

- a. Connect the speaker wiring to the colour coded binding posts, being careful to get the phasing correct.

The positive speaker leads should be connected to the RED terminals. (The top two red terminals are directly connected, while the lower two are switched via the headphone socket, being muted when a headphone plug is inserted).

The negative speaker leads should be connected to the BLACK terminals.

Left output is on the left hand side as viewed from the front of the unit while the right is on the right hand side viewed from the front.

- b. Connect a turntable to the phono input sockets (located on the right hand end of the unit viewed from the front). Connect the turntable earth (ground) lead to the terminal provided.

c. Connect the unit to the mains and switch it on. After approximately 5 seconds a slight click should be heard from the muting relay, indicating that it has opened, allowing signals to pass.

- d. Set the volume control to a low listening level (about 8 o'clock).

- e. Select PHONO on the input selector.

- f. Adjust the volume to the desired listening level.

2. High Level Operation

a. Connect the speaker wiring to the colour coded binding posts, being careful to get the phasing correct.

The positive speaker leads should be connected to the RED terminals. (The top two red terminals are directly connected while the lower two are switched via the headphone socket, being muted when a headphone plug is inserted).

The negative speaker leads should be connected to the BLACK terminals.

Left output is on the left hand side as viewed from the front of the unit while the right is on the right hand side viewed from the front.

b. Connect the output from the CD Player, Tuner or Tape Deck etc, to the appropriate input sockets with a high quality interconnecting cable taking care not to reverse the channels.

c. Connect the unit to the mains and switch on. After approximately 5 seconds a slight click may be heard from

the muting relay, indicating that it has opened allowing signals to pass.

d. Set the volume control to a low listening level, (about 8 o'clock).

e. Select the appropriate input on the input selector switch.

f. Adjust the volume to the desired listening level.

3. Tape Record Outputs

These outputs provide a line level recording signal of whichever source is selected on the RECORD selector switch.

a. Connect the tape RECORD outputs on the McLaren A150 to the record inputs of the tape deck and the tape PLAY sockets to the play output of the tape deck.

b. Connect the programme source you wish to record following the instructions in the appropriate section above.

c. Select the required source on RECORD selector, turn the tape deck on and begin recording.

NOTE Any source may be selected on the INPUT SELECTOR while recording the same or any other source with no affect on the recording.

Control DescriptionON/OFF Switch

The on/off switch on the McLaren A150 applies mains voltage to the primary side of the mains transformer, and so power to the unit. It also controls the muting relay, so clamping the preamplifier section output to earth immediately after switch off.

Balance

The BALANCE control allows either channel to be cut with respect to the other. Clockwise rotation of this control progressively cuts the left hand channel. Anticlockwise rotation of this control progressively cuts the right hand channel.

Volume Control

This is a passive attenuator control which with clockwise rotation progressively increases the gain of the preamplifier from minus infinity dB to +104 dB (MC operation), +79 dB (MM operation) or +42 dB (High level inputs).

Record Selector

The RECORD rotary switch selects any of the inputs to the preamplifier for recording purposes, directing whichever input source is selected to both tape 1 & 2 Record outputs.

NOTE The Record selector operates independently of the Input selector, so that any input may be selected while recording the same or any other input.

Input Selector

The INPUT rotary switch selects whichever programme source is required for listening purposes.

NOTE The input selector operates independently of the record selector, so that any input may be recorded while listening to the same or any other input.

Headphone Socket

The headphone socket can be used in two ways dependent on the way the speakers are connected. Firstly if the speakers are connected to the DIRECT speaker terminals, plugging a set of headphones in will provide signal to the headphones and also allow the speakers to continue operating. If however the speakers are connected to the INDIRECT output terminals, the output to the speakers will be automatically muted whenever the headphones are plugged in.

Mechanical Description

The construction of the McLaren A150 comprises seven major mechanical/electrical modules. These are...

1. The main PC board, which carries all the electronic components, including control potentiometers, switches, input sockets and output devices.

2. Front Panel. Made from extruded and drilled aluminum, with a light bronze anodised finish.

3. Back Panel. The back panel carries the mains fuse, earthing/grounding input and output sockets. This panel is made from punched sheet aluminum and finished in black. The finned heatsink protrudes through it.

4. Top Cover. Made from sheet aluminum and finished in black

NOTE Removal of the top cover gives access to the component side of the Board.

5. Bottom Cover. Made from sheet aluminum and finished in black.

NOTE Removal of the bottom cover gives access to the solder side of the Board.

6. and 7. Left and right hand side rails. Made from extruded aluminum and finished in black

Access for servicing is by removing the top and bottom panels which are secured by 3/16inch cap screws.

NOTE Care should be taken to not mix top and bottom screws as top cover screws are LONGER and may damage the pretapped threads provided for the bottom cover screws.

Electrical Description

The McLaren A150 consists of 8 stages (4 per channel) and a power supply. Fig 1.

From input to output these are (description for one channel only) ...

Phono Input Stage Fig 3

This stage consists of two differential pairs made up of 2SC2546 transistors and BC560 transistors. The input pair (2SC2546) are run at a current of 5mA per transistor to ensure a low noise figure when the circuit is driven from very low impedance sources (3-100ohms). The output differential pair (BC560) are run with a total current of 20mA, this allows the circuit to drive the 680 ohm feedback loop. A current source in the form of a BF245B has been used to load the output side of the BC560 pair thus allowing the output to swing from rail to rail.

Another BF245B has been used to regulate the current in the input differential pair, this also provides high rejection of power supply noise thus allowing a high quality, but noisy supply to be used.

The stage has a flat frequency response with gains of 146 times (43dB) of 11.9 (21.5dB) dependent on the phono gain setting. Output impedance is less than 50 ohms at 1kHz.

The input to the stage is DC coupled with loading switchable between 47kohms and 100ohms, DC coupling of the input ensures that distortion is minimised at this critical interface. The output from the stage is AC coupled via 1uF polypropylene capacitor to avoid DC offsets being amplified by consequent stages.

RIAA Equalization Stage Fig 4

The active part of this stage is formed by an NE5534 IC, this is a low noise, high speed operational amplifier providing very good sonic results at a minimal cost.

At the input to the stage there is a passive RC filter using a 4K7 resistor and a 15nF capacitor. This provides the high frequency RIAA equalization. The low frequency section of the characteristic is formed by the 3n3 capacitor, 91K and 1MO resistors in the feedback loop.

The input is coupled to the output capacitor of the input stage and the output is AC coupled through a 1uF polypropylene capacitor. Gain of the section is 100 times (40dB) at 1KHz. The input impedance of the stage is 12Kohms and the output impedance is 150 ohms.

The RIAA stage has its own regulated power supply consisting of two three terminal regulators.

Switching Stage Fig 5

This is a totally passive stage consisting of two "flex" switches. The flex switches provide for the selection of program material on the inputs of the preamplifier for either auditioning or recording.

The two "flex" selector switches are connected in such a way that they function independently of one another, allowing any input to be selected while recording the same or any other input.

Line and Power Stage Fig 6

The first part of the line stage is the volume control, which is a 50Kohm potentiometer operating as a passive attenuator.

The active part of the line stage follows the volume control, and consists of three stages per channel. The input stage is an integrated circuit which provides a current modulated signal to the emitters of the driver stage transistors. The driver transistors provide a voltage shift (BC639 and 640 transistors). The modulated current is then imposed across a resistor providing the voltage drive for the output devices (n and p channel power mosfets), with the sources connected to the supply rail and drain to the output they provide a high voltage gain and good supply rejection. The output is the feedback to the IC.

The input is DC coupled and is fed to the input of the IC. The output stage is then followed by an inductor and RC network which ensure that the amplifier is stable into highly reactive loads and preventing capacitive loads effectively becoming a short circuit at high frequencies.

This stage has a flat frequency response with a gain of 41 times (114dB) with the balance at the mid point. Input impedance to the stage is 50Kohms and the output impedance is 0.22ohms at 100Hz.

Functional Check Procedure

The following is a full functional check procedure for the McLaren A150, some of which may not be required for checking specific problems.

Check Procedures

1. Noise.....(i) phono
(ii) high level
2. Input Sensitivity.....(i) phono
(ii) high level
3. Input Overload.....phono
4. Distortion and Power
5. RIAA response.....phono
6. Bandwidth.....high level
7. Crosstalk.....all inputs
8. Relay Operation
9. Balance Control
10. Quiescent Current
11. D.C. Offset
12. Rise Time

1. Noise Check(i) Phono

NOTE Check the gain setting of the phono stage, following the operating instructions Pg 2.

High Gain

- a. Load the phono input by using pole 1 of the gain selector switch set to 100ohms (pole 1 ON), and a further 100ohm loading plug.
- b. Plug a measuring instrument (preferably an audio volt meter) into the pre out sockets taking care to avoid hum loops. Set the volume control to maximum.
- c. Set the input selector to PHONO .
- d. Plug the unit into the mains and switch on.
- e. Read the measuring instrument used.

NOTE At this sensitivity the preamplifier is sensitive to stray magnetic and electric fields, so care should be taken to keep transformers etc well away from the unit under test.

Noise for the McLaren A150 Phono high gain should be ...

Unweighted -33dB ref 1V at the output = -70dB ref 500uV at the input.

Weighted -39dB ref 1V at the output = -76dB ref 500uV at the input.

Low Gain

- a. Load the input by using pole 1 of the gain selector switch set to 47Kohms (pole 1 OFF), and a further 1Kohms loading plug.
- b. Plug a measuring instrument (preferably an audio volt meter) into the pre out sockets taking care to avoid hum loops set the volume control to maximum.
- c. Set the input selector to PHONO.
- d. Plug the unit into the mains and switch on.
- e. Read the measuring instrument used.

NOTE At this sensitivity the preamplifier is sensitive to stray magnetic and electric fields, so care should be taken to keep transformers etc away from the unit under test.

Noise for the McLaren A150 Phono low gain should be...

Unweighted -41dB ref 1V at the output = -74dB ref 5mV at the input.
Weighted -50dB ref 1V at the output = -83dB ref 5mV at the input.

(ii) High Level

- a. Load the appropriate input sockets with loading plugs with 10Kohm resistors in them.
- b. Plug a measuring instrument (preferably an audio volt meter) into the pre out sockets, and set the volume control to maximum.
- c. Set the input selector to the input being measured.
- d. Plug the unit into the mains and switch on.
- e. Read the measuring instrument used.

High level input noise for the preamplifier should not exceed...

Unweighted -51dB ref 1V at the output = -86dB ref 500mV at the input.
Weighted -61dB ref 1V at the output = -96dB ref 500mV at the input.

2. Input Sensitivity

(i) Phono

NOTE Check the gain setting of the phono stage, using the instructions in the operating instructions Pg 2

NOTE Take care to avoid hum loops when measuring phono sensitivity as the hum will lead to an incorrect measurement

High Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand output speaker post.
- Set the volume control to maximum, and the input selector to the PHONO input.
- d. Ensure that the input impedance is set at 47Kohms .
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level to give full output (24vrms).
- g. Measure the signal level at the PHONO input.
The input signal for full output should be 160uV rms.
- h. Repeat the procedure for the other channel.

Low Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand speaker post.
- c. Set the volume control to maximum, and the input selector to the PHONO input.
- d. Ensure that the input impedance is set at 47Kohms .
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level to give full output (24v).
- g. Measure the signal level at the PHONO input.
The input signal for full output should be 2.7mVrms.
- h. Repeat the procedure for the other channel.

High Level

- a. Connect a signal generator to the left hand input socket on the appropriate input.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand speaker post.
- c. Set the volume control to maximum, and the input selector to the appropriate input.
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1kHz sine wave and adjust its level to give full output (24vrms).
- g. Measure the signal level at the appropriate input.
The input signal for full output 210mV rms.
- h. Repeat the procedure for the other channel.

Record Outputs

(1) Phono

NOTE Check the gain setting of the phono stage, using the instructions in the operating instructions Pg 2

NOTE Take care to avoid hum loops when measuring phono sensitivity as the hum will lead to an incorrect measurement.

High Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect a measuring instrument (Preferably an audio voltmeter) to the left hand REC socket.
- c. Set the Record selector to the PHONO input and volume to min.
- d. Ensure that the input impedance is set at 47Kohms (Pole 1 OFF).
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1kHz sine wave and adjust its level to give 1Vrms at the record output.
- g. Measure the signal level at the PHONO input.
The input signal for 1Vrms output should be 760uVrms.
- h. Repeat the procedure for the other channel.

Low Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand REC socket.
- c. Set the Record selector to the PHONO input.
- d. Ensure that the input impedance is set at 47Kohms and the volume set to min.
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level to give 1Vrms at the record output.
- g. Measure the signal level at the PHONO input.
The input signal for 1Vrms output should be 12.9mV rms.
- h. Repeat the procedure for the other channel.

High Level

- a. Connect a signal generator to the left hand input socket on the appropriate input.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand REC socket.
- c. Set the record selector to the appropriate input and set the volume to min.
- d. Plug the unit into the mains and switch on.
- e. Set the signal generator to a 1KHz sine wave and adjust its level to give 1Vrms at the record output.
- f. Measure the signal level at the appropriate input.
The input signal for 1Vrms output should be 1Vrms.
- h. Repeat the procedure for the other channel.

3. Input Overload Phono

NOTE Check the gain setting of the phono stage, using the instructions in the operating instructions Pg 2.

High Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect an oscilloscope to the left hand record-out socket.
- c. Set the record selector to the PHONO input.
- d. Ensure that the input impedance is set at 47Kohms and the volume set to min.
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level gradually. Continue increasing the input level until clipping becomes visible.
- g. Measure the signal level at the PHONO input.
Input overload should be 7mV at 1KHz.

Low Gain

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect an oscilloscope to the left hand record out socket.
- c. Set the input selector to the PHONO input
- d. Ensure that the input impedance is set at 47Kohms and the volume set to min.
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level gradually. Continue increasing the input level until clipping becomes visible.
- g. Measure the signal level at the PHONO input.
Input overload should be 120mV at 1KHz.

4. Distortion (THD)

All Inputs

- a. Connect a low distortion signal generator to the left hand input socket of the appropriate input.
- b. Connect a distortion analyser and an eight ohm to the left hand speaker posts being careful to observe the correct polarity.
RED should be connected to the positive meter lead.
BLACK should be connected to the negative meter lead..
- c. Set the input selector to the appropriate input.
- d. Ensure that the input impedance is set at 47Kohms (pole 1 OFF) if measuring the phono input.
- e. Plug the unit into the mains and switch on.
- f. Adjust the analyser using the manufacturer's instructions to give the required measurements.
- g. Repeat the above procedure for the right hand channel.

NOTE Avoid running the amplifier at levels at which the input may become overloaded or noise may make a significant contribution to measured distortion. Also do not run the amplifier at high output above 20Khz as this may damage the output R.F. suppression network.

NOTE Take care to avoid hum loops when measuring distortion as the hum will lead to an incorrect measurement.

Distortion of less than 1.0% should be achieved from 20Hz to 20Khz, and less than 0.1% at 1Khz

Maximum output

- a. Connect a signal generator to the left hand high level input socket of the amplifier.
- b. Connect either a distortion analyser or an oscilloscope to the left channel output terminals being careful to observe the correct polarity.
RED should be connected to the positive meter lead.
BLACK should be connected to the negative meter lead.
Also connect an 8ohm 100watt load across the output terminals.
- c. Connect the unit to the mains and switch on.
- d. Slowly increase the signal generator output until.
 - i. Distortion analyser, a steep rise in distortion is noted indicating clipping.
ii. Clipping is visible on the oscilloscope screen.
- Maximum output should be greater than...
8ohm load...24.5Vrms...75Watts
4ohm load...19.0Vrms...90Watts
- Note. To measure the 4ohm performance repeat procedures a to d but connect a suitable 4ohm load to the output terminals.
- e. Repeat the above procedure for the right hand channel.

5. RIAA Response

- a. Connect a signal generator to the left hand PHONO input socket.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand record out socket.
- c. Set the input selector to the PHONO input.
- d. Ensure that the input impedance is set at 47Kohms and the volume to min.
- e. Plug the unit into the mains and switch on.
- f. Set the signal generator to a 1KHz sine wave and adjust its level until a convenient reference output level is reached.
- g. Sweep the signal generator frequency up and or down to the spot frequencies below and measure the output with respect to the 1KHz reference.
- h. Repeat the above procedure for the right hand channel.

NOTE Take care to avoid hum loops, and overloading the input when measuring RIAA response, as the hum or an overload will lead to an incorrect measurement.

RIAA Response

FREQUENCY	OUTPUT ref 1KHz	
50Hz	+17.0dB	
100Hz	+13.1dB	
500Hz	+2.6dB	
1KHz	+0.0dB	
2KHz	-2.6dB	
5KHz	-8.2dB	
10KHz	-13.7dB	
15KHz	-17.2dB	
20KHz	-19.6dB	
		The preamplifier should conform to this response to within + or - 0.2dB

6. Bandwidth

- a. Connect a signal generator to the left hand input socket of one of the high level inputs.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand speaker posts.
- c. Plug the unit into the mains and switch on.
- d. Set the signal generator to 1Khz and a level so that the preamplifier output level is at a convenient reference.
- e. Now sweep the frequency up or down to find the -1dB and -3dB points. These should be at... -1dB at 30KHz and 20Hz
-3dB at 60KHz and 10Hz
- f. Repeat the procedure for the other channel.

7. Crosstalk

Phono

- a. Connect a signal generator to the left hand input socket of the PHONO input.
- b. Connect a measuring instrument (preferably an audio voltmeter) and an eight ohm load to the left hand speaker posts being careful to observe the correct polarity.
 - RED should be connected to the positive meter lead.
 - BLACK should be connected to the negative meter lead..
- c. Set the volume control to about 12 O'Clock.
- d. Plug the unit into the mains and switch on.
- e. Set the signal generator to 1KHz and a level so that the output level is at a convenient reference.
- f. Measure the output from the right hand channel by connecting a measuring instrument to the right hand output socket.
- g. Repeat steps b,e and f for spot frequencies across the audio band. Substitute the measuring frequency for 1KHz in step e.

Crosstalk should be better than...

20Hz to 2KHz better than -65dB ref the driven channel.
2KHz to 20KHz better than -50dB ref the driven channel.

- h. Repeat the above procedure for the other channel.

High Level

- a. Connect a signal generator to the left hand input socket of a high level input.
- b. Connect a measuring instrument (preferably an audio voltmeter) and an eight ohm load to the left hand speaker posts being careful to observe the correct polarity.
 - RED should be connected to the positive meter lead.
 - BLACK should be connected to the negative meter lead..
- c. Set the volume control to about 12 O'Clock.
- d. Plug the unit into the mains and switch on.
- e. Set the signal generator to 1KHz and a level so that the preamplifier output level is at a convenient reference.
- f. Measure the output from the right hand channel by connecting a measuring instrument to the right hand output socket.
- g. Repeat step f for spot frequencies across the audio band. There is no need to re adjust the input level.

Crosstalk should be better than...

20Hz to 2KHz better than -80dB ref to the driven channel.
2KHz to 20KHz better than -60dB ref to the driven channel.

- h. Repeat the above procedure for the other channel.

8. Relay Operation

- a. Connect a signal generator to the left hand input socket of a high level input.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand speaker posts.
- c. Set the volume control to about 12 O'Clock.
- d. Set the signal generator to give a preamplifier output of 50 mV approx.
- e. Plug the unit into the mains and switch on.
- f. Output should not immediately appear, there should be a 10 second delay, then a slight click will be heard and the signal will be present at the output.
- g. Repeat the above procedure for the other channel.

NOTE Output should be muted immediately on switch off.

9. Balance Control

- a. Connect a signal generator to the left hand input socket of a high level input.
- b. Connect a measuring instrument (preferably an audio voltmeter) to the left hand pre out socket.
- c. Set the volume control to about 12 O'Clock.
- d. Plug the unit into the mains and switch on.
- e. Set the signal generator to 1KHz and a level so that the amplifier output level is at a convenient reference.
- f. Rotate the balance control clockwise. The output from the left channel should fall to zero. Anticlockwise rotation will cause no change.
- g. Repeat the above procedure for the right hand channel.
For the right hand channel anticlockwise rotation will fall to zero. Clockwise rotation will cause no change.

2. Quiescent Current (IQ)

WARNING: This procedure should only be attempted by a qualified person as it involves adjustments being made while the amplifier is running.

WARNING: Some internal parts are live. Do not set the IQ trimpot so that its resistance is less than 20Kohms

- a. Ensure unit is disconnected from the mains supply and no input or load is connected.
- b. Using the 5/32" Allen key provided unscrew the four cap screws which secure the top cover and slide it back.
- c. Locate the mosfet output devices.
- d. Carefully remove one of the screws closest to the back from a 2SK135 see fig , on one channel only and place a current meter(preferably a fused type) in place of the screw(observe polarity shown in fig when using an analog meter), set the meter range 400mA or greater.
- e. Ensure that there are no short circuits to chassis or other components.
- f. Plug the unit into the mains and switch on. The IQ should increase rapidly then gradually to a maximum of 100mA after 5 minutes. If the IQ is not set at 100mA it will be necessary to adjust the trimpot until a reading of 100mA is obtained.
- Left channel, clockwise rotation will increase IQ Anticlockwise will decrease IQ.
- Right channel, clockwise rotation will decrease IQ. Anticlockwise rotation will increase IQ.
- g. Once the IQ has been set turn the power off and disconnect the amplifier from the mains, wait for the current to drop, then remove the meter and replace the fuse. Repeat procedures a-f for the other channel.

11. DC Offset

The D.C. offset on the McLaren A150 cannot be reset but should be expected to fall within +or- 10 mV of 0V

12. Rise Time

- a. Connect a signal generator to a left hand input socket of the amplifier.
- b. Connect an oscilloscope and 8ohm load to the left hand output binding posts of the amplifier being careful to observe the correct polarity.
RED should be connected to the positive scope lead.
BLACK should be connected to the negative scope lead.
- c. Connect the unit to the mains and switch on.
- d. Set the signal generator to give a 1KHz square wave, and adjust the level to give a 100V peak to peak output.
- e. Read off the oscilloscope the time taken to go from 10% to 90% output as shown below in fig 6.

The rise time should not exceed 5 micro seconds.
f. Repeat the above procedure for the right hand channel.

RTS LIST

	DESCRIPTION	SUPPLIER PART No
RESISTORS		
R1, RIL1	RESISTOR MRS25 100e	2322-156-11001
R2, RIL2	RESISTOR MRS25 47K	2322-156-14703
R3,4, RIL3,4	RESISTOR MRS25 330e	2322-156-13301
R5, RIL5	RESISTOR MRS25 6e8	2322-156-16808
R6, RIL6	RESISTOR MRS25 91e	2322-156-19109
R7, RIL7	RESISTOR MRS25 4.7e	2322-156-14708
R8, RIL8	RESISTOR MRS25 680e	2322-156-16801
R9, RIL9	RESISTOR MRS25 47e	2322-156-14709
R11, RIL11	RESISTOR MRS25 1K	2322-156-11003
ER1, REL1	RESISTOR MRS25 330	2322-156-13301
ER2, REL2	RESISTOR MRS25 4K7	2322-156-14702
ER4, REL4	RESISTOR MRS25 91K	2322-156-19103
ER5, REL5,	RESISTOR MRS25 10K	2322-156-11003
ER6, REL6	RESISTOR MRS25 1M	2322-156-11005
ER7, REL7	RESISTOR MRS25 27K	2322-156-12703
ER8, REL8	RESISTOR MRS25 15K	2322-156-11503
LR1, RLL1	RESISTOR MRS25 2K2	2322-156-12202
LR2,7, RLL2,7	RESISTOR MRS25 10K	2322-156-11003
LR3,4, RLL3,4	RESISTOR MRS25 47K	2322-156-14703
LR5,6, RLL5,6	RESISTOR MRS25 2K7	2322-156-13302
LR8, RLL8	RESISTOR MRS25 82e	2322-191-38209
LR9, RLL9	RESISTOR PR37 2e2	2322-191-32208
LR10,11,12, RLL10,11,12	RESISTOR PR37 22e	2322-191-32209
LR13, RLL13	RESISTOR PR37 390e	2322-191-13901
P1, RP2	RESISTOR PR37 180e	2322-191-31501
P3	RESISTOR MRS25 91K	2322-156-19103
P4	RESISTOR MRS25 220K	2322-156-12204
P5	RESISTOR PR37 680e	2322-191-38201
P6	RESISTOR MRS25 2K2	2322-156-12202
CAPACITORS		
IR1, CIL1, CIR6, CIL6	150pF POLYSYRENE 630V	2222-427-41501
IR2, CIL2	6n8 POLYSTYRENE 63V	2222-424-46802
IR3, CIL3,	1uF POLYPROPYLENE 160V	WIMA 1uF 160V
IR4,5, CIL4,5	100uF ELECTROLYTIC 63V	2222-037-5801
ER1, CEL1	15n POLYSTYRENE 63V	2222-424-41503
ER2, CEL2, CSR1, CSL1	3n3 POLYSTYRENE 63V	2222-424-43302
ER3, CEL3	1uF POLYPROPYLENE 160V	WIMA 1uF 160V
ER4,5, CEL4,5	100uF ELECTROLYTIC 63V	2222-037-5801
LR2,3, CLL2,3	1000uF 10V ELECTROLYTIC	2222-037-54102
LR4, CLL4, CP15	220uF ELECTROLYTIC 25V	2222-037-55221
LR6,7, CLL6,7	0.33uF POLYESTER 250V	2222-368-41334
LR8,9, CLL8,9	1uF POLYESTER 100V	2222-368-21105
LR10, CLL10	330pF POLYSYRENE 630V	2222-427-43301
P,1,2,3,4,5,6,7,8,9,10	2200uF ELECTROLYTIC 63V SHAMWA	2200uF 63V
P17	0.047uF POLY 240 VAC	2222-330-00473
P,11,12,13,14,18	100uF ELECTROLYTIC 63V	2222-037-5801
P16	0.0047uF CERAMIC	2023-999-10012

SEMICONDUCTORS

TIR1,2,TIL1,2	2SC2546 TRANSISTOR	2SC2546E
TIR3,4,TIL3,4	BC560 NPN TRANSISTOR	B560
TIR5,6,TIL5,6 (RIR10)	BF245B JUNCT/FET	BF245B
GIR1,GIL1	7815 REGULATOR	7815
GIR2,GIL2	7915 REGULATOR	7915
RER1,IER2	NE5534 OP AMP	NE5534
GER1,GEL1	7815 REGULATOR	7815
GER2,GEL2	7915 REGULATOR	7915
TLR1,TLL1,TP1	BC639 NPN TRANSISTOR	BC639
TLR2,TLL2	BC640 PNP TRANSISTOR	BC640
TLR3,TLL34	2SJ50 POWER MOSFET	2SJ50
TLR4,TLL4	2SK135 POWER MOSFET	2SK135
ILR1,ILL1	ZK150IC	ZK150
DLR1,2,DLL1,2,DLR5,6,DLL5,6	5V6 ZENER DIODE	BZX79C 5.6
DLR3,4,DLL3,4,	12V ZENER DIODE	BZX85C 12
DP1,DP2	15V ZENER DIODE	BZX79C 15V
DP3	12V ZENER DIODE	BZX85C 12
DP4	SUPER BRIGHT LED	HLMP-1401 YELLOW
BP1	BRIDGE RECTIFIER	BR104
GP1	7815 REGULATOR	7815
GP2	7915 REGULATOR	7915

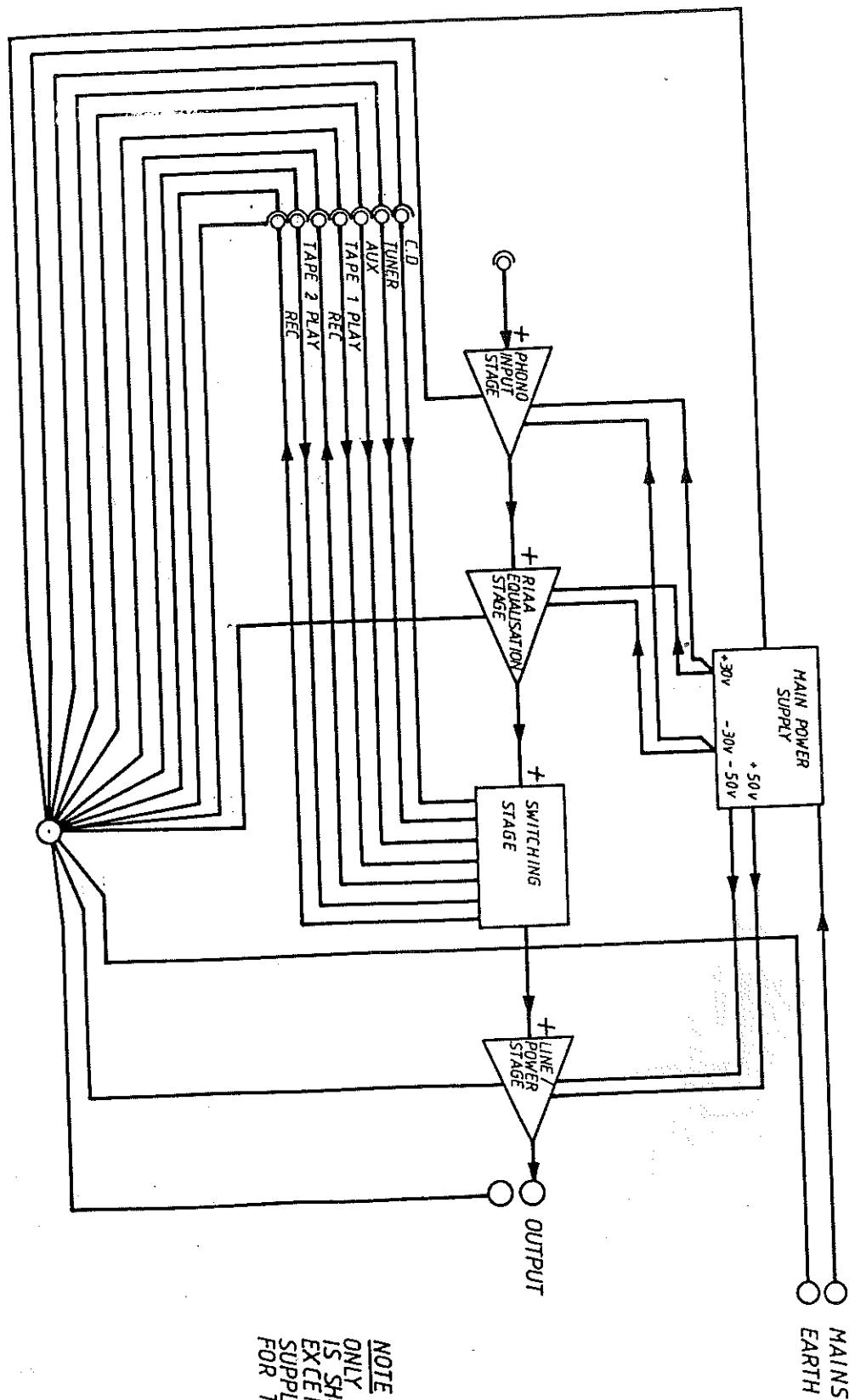
POTENTIOMETERS

PL1	50KLOG DUAL POT (TEMP)	K272A002K-50KDX2
PLR3,PLL3	470K TRIMPOT	2322-410-03363
PL2	100K LIN POT (TEMP)	

INPUT OUTPUT CONNECTORS FRONT/BACK/PCB BITS

SW3	SPKR POSTS-RED	T23ARD
AP1	SPKR POSTS-BLACK	T23ABK
	NYLON T03 SPACER	
	SILPADS	IN706B
	ROTARY SWITCH 6 WAY	SRBU06
	ROTARY SWITCH 6WAY	SSSR24
	PRINTED CIRCUIT BOARD	XXX-1-2987
	MAINS SWITCH	SW160
	MAINS POWER TRANSFORMER	TD475
	APPLIANCE CONNECTOR	8843 ZPL 40
	FUSE HOLDER (MAINS)	3032210
	FUSE CLIPS PC MNT	FH11
	TOGGLE SWITCH DPDT	MS341F
	CORDSET ?	CORDSET
	4WAY PHONE SOCKETS	T-5941
	20mm 3AMP FUSES	FSS2
	20mm 3AMP FUSE	FSL3

HARDWARE


1/4 x 3/4CAP SCREW GOLD 1/4x3/4CAP SCREW
 KNULED EARTH NUT 05-300-M4

TRANSFORMER SPACER	11-150-T1
SIDE RAIL - L/S	08-402-LIP
SIDE RAIL - R/S	08-402-RIP
FRONT PANEL	08-150-1A
BOTTOM COVER	16-150-BC1P
A150 BACK PANEL	16-150-BP1PS
TOP COVER	16-402-TC1P
BADGE 1102	18-150-1
PLASTIC FEET PLASTIC	20-402-2
LARGE KNOBS	21-402-L1A
SMALL KNOBS	21-402-S1A
WASHER PLATE	WASHER PLATE

FOR PACKING	
POLYSTYRENE TOP/BOTTOM	90-500-4021
POLYSTYRENE END BLOCKS	90-500-402
McLAREN BOX (BROWN)	McLAREN BOX (BROWN)
LEAFLETS (INFO)	91-150-1
ALLEN KEY 5/32	
3A FUSE 32mm	62-300-FSL3
3A FUSE 20mm	62-200-FSS3
RED BANANA PLUGS	
BLACK BANANA PLUGS	

MCLAREN A150 INTEGRATED AMPLIFIER - Fig 1 SCHEMATIC DIAGRAM

14-9-87

NOTE
ONLY ONE CHANNEL
IS SHOWN, ALL SECTIONS
EXCEPT THE MAIN POWER
SUPPLY ARE REPEATED
FOR THE OTHER CHANNEL

CORRECTIONS

18:12:07 RIR10 330e TO BF 245 B

R/R 10 JUNE 1981

7815
3 2 1
FROM
+30V
MAIN

FROM
+30V
MAIN
SUPPLY

1

INPUT

LOADING

R/R 4
330 e

POLYSTYRENE

RIRB
680e

BC 560
TIR 3 TIR 4

FROM
+30V
MAIN
SUPPLY

1

TO RIAA EQUALISATION

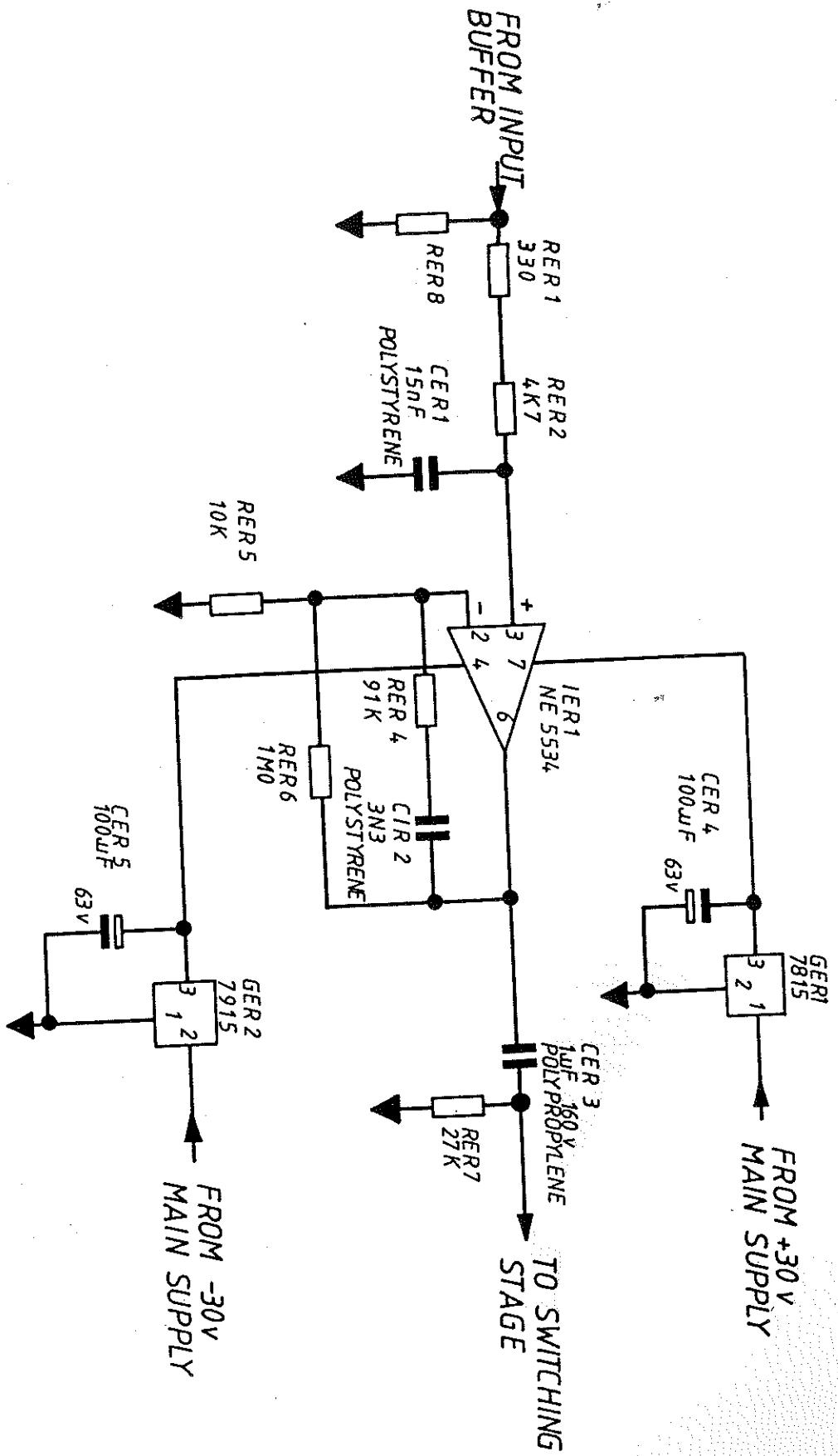
LIR 3
LWF 160V
POLYPROPYLENE

2

TIRI TIR
25C2546

ADING

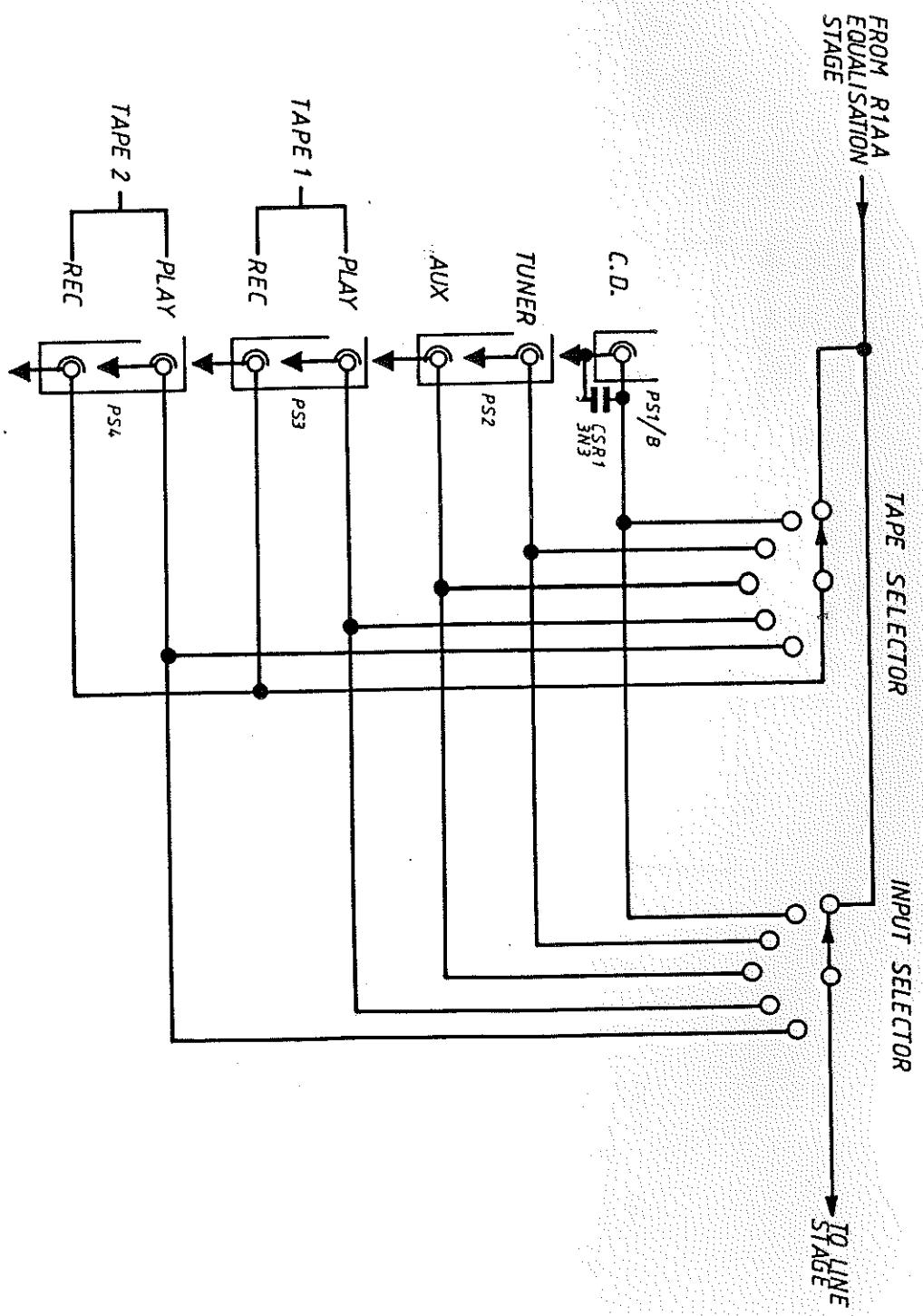
107


INP

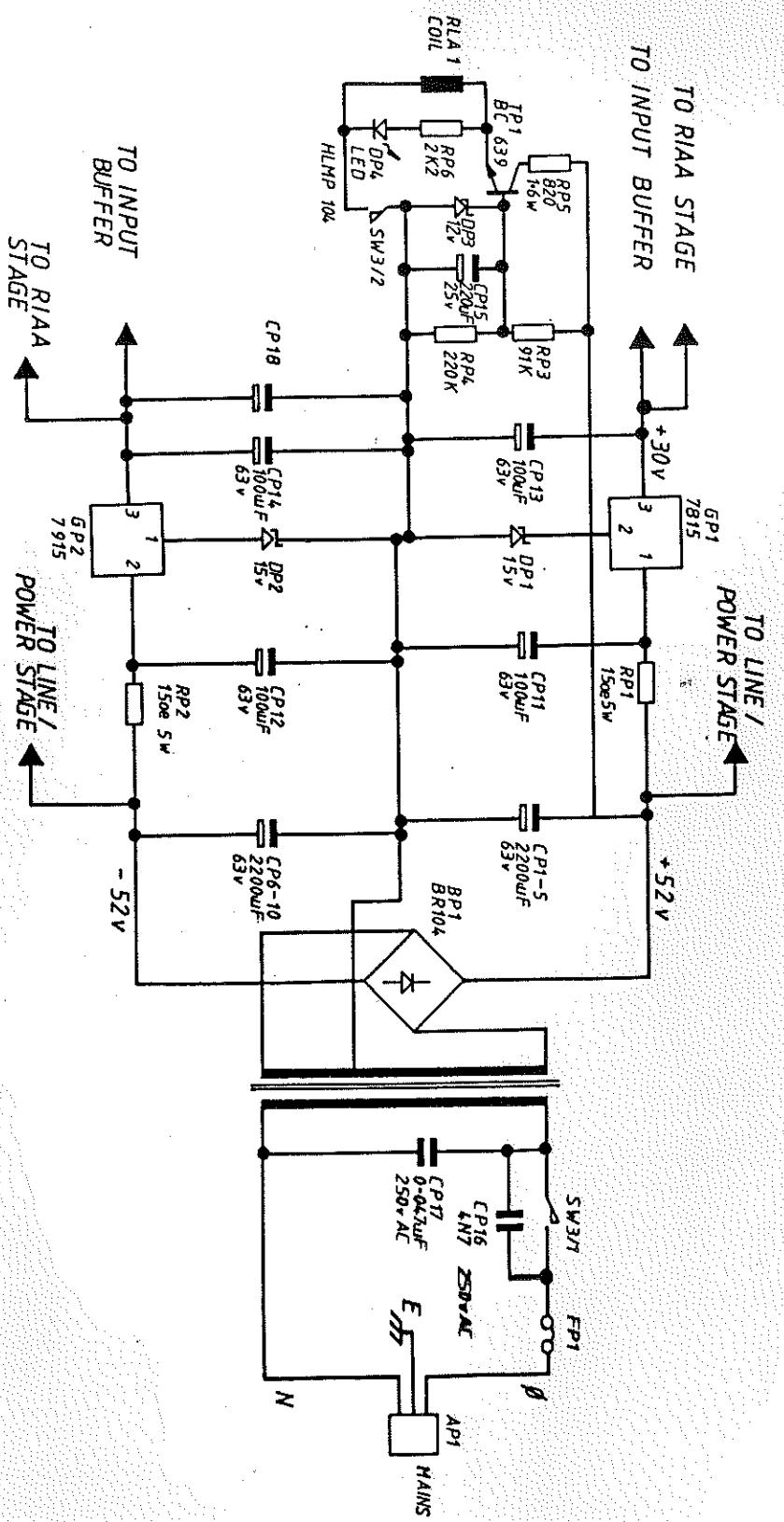
CORRECTIONS

18:12:87 R/R 10 330e TO BF 245B
R/R 11 ADDED

MCLAREN A150 INTEGRATED AMPLIFIER – Fig 2 INPUT BUFFER


17-687

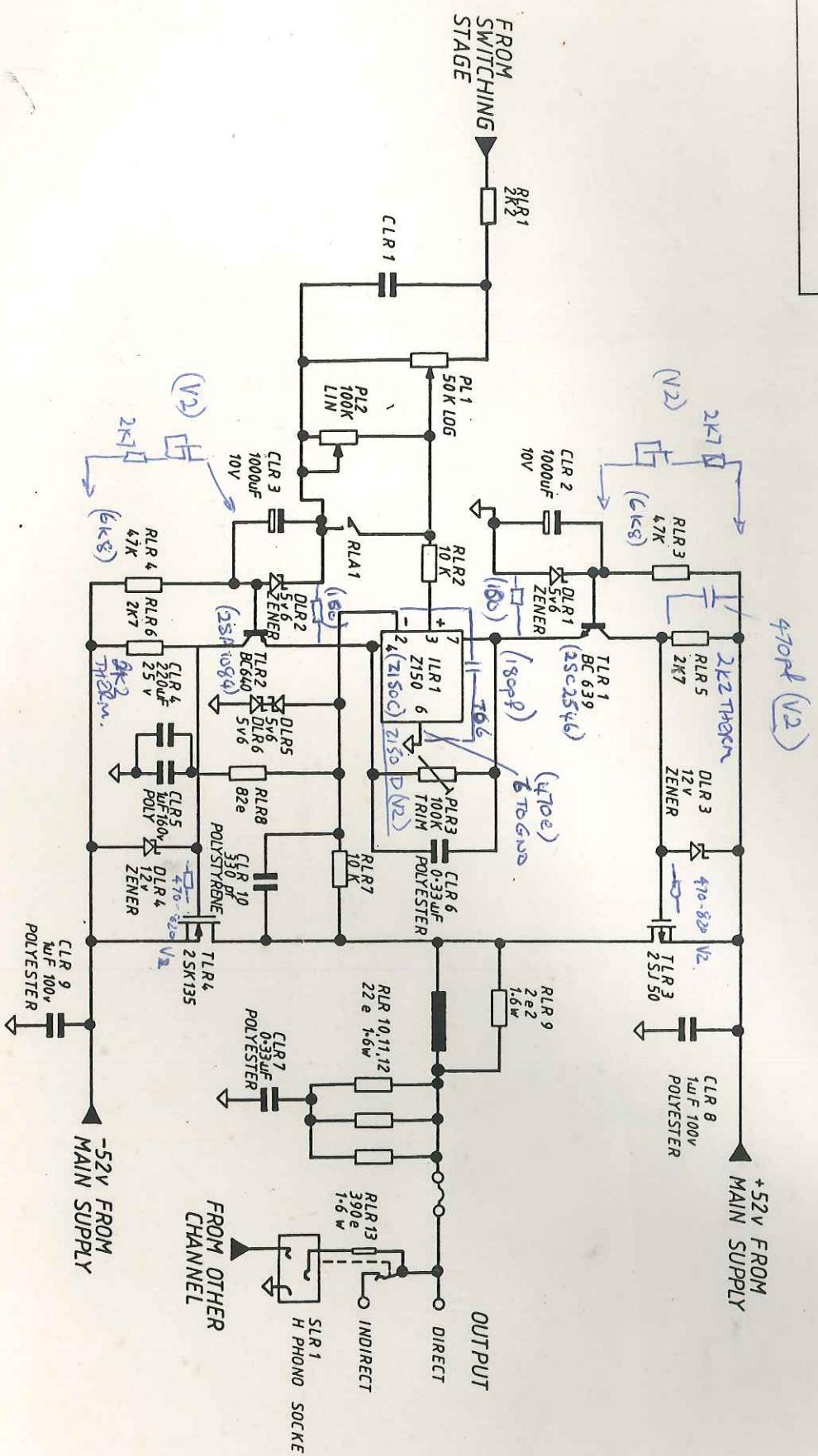
MCLAREN A150 INTEGRATED AMPLIFIER
Fig 3 — RIAA EQUALISATION STAGE


14-9-87

SCALE:	DRAWN:
DATE:	APPROVED:

MCLAREN A150 INTEGRATED AMPLIFIER — Fig 4 SWITCHING SCHEMATIC

SHEET			
DRAWN	CHECKED	SCALES	SERIES OF



INTEGRATED AMPLIFIER – Fig 6 MAIN POWER SUPPLY

MC LAREN A 150

				SHEET
CHICKEN	CHICKEN	SCALES	SERIES OF	
TRUCKED	DATE NO. 9:51		REF	

18:12:87 RLR3 AND RLR4 8K2 TO 47K
CLR2 AND CLR3 220uF TO 1000uF 10V
RLR5 AND RLR6 3K3 TO 2K7

MCLAREN A 150 INTEGRATED AMPLIFIER Fig 5 VOLUME / BALANCE AND POWER AMP

ADJUST TO 0.3 PERFORMANCE (BLOW VALUES)
12 MODIFICATION FOR MORE.
16/9/97 FOUND GATE RESISTOR REQUIRED FOR STABILITY. 476-8202.

			SHEET
DRAWN	CHECKED	8 C	SCALE
TRACED	DATE		REF